Testing Structural Change in Conditional Distributions via Quantile Regressions
نویسندگان
چکیده
We propose tests for structural change in conditional distributions via quantile regressions. To avoid misspecification on the conditioning relationship, we construct the tests based on the residuals from local polynomial quantile regressions. In particular, the tests are based upon the cumulative sums of generalized residuals from quantile regressions and have power against local alternatives at rate n−1/2. We derive the limiting distributions for our tests under the null hypothesis of no structural change and a sequence of local alternatives. The proposed tests apply to a wide range of dynamic models, including time series regressions with m.d.s. errors, as well as models with serially correlated errors. To deal with possible correlations in the error process, we also propose a simulation method to obtain the p-values for our tests. Finally, Monte Carlo simulations suggest that our tests behave well in finite samples. JEL classifications: C12, C14, C22, C5
منابع مشابه
Counterfactual distributions of wages via quantile regression with endogeneity
Counterfactual decompositions allow the researcher to analyze the changes in wage distributions by discriminating between the effect of changes in the population characteristics and the effect of changes in returns to these characteristics. In this paper we derive counterfactual distributions by recovering the conditional distribution via a set of quantile regressions, and correcting for the en...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملRobust Estimation of Conditional Mean by the Linear Combination of Quantile Regressions
In this paper, we propose a new robust estimator for regression problems in the form of the linear combination of quantile regressions. The proposed robust regression estimator is helpful for the conditional mean estimation especially when the error distribution is asymmetric or/and heteroscedastic, where conventional robust regressions yield considerable bias to the conditional mean. First we ...
متن کاملDynamic Copula Quantile Regressions and Tail Area Dynamic Dependence in Forex Markets
We introduce a general approach to nonlinear quantile regression modelling that is based on the specification of the copula function that defines the dependency structure between the variables of interest. Hence we extend Koenker and Bassett’s [1978] original statement of the quantile regression problem by determining a distribution for the dependent variable Y conditional on the regressors X a...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کامل